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Abstract

Lateration based real time locating systems (RTLS) re-
quire anchor nodes with known positions to calculate the
position of a mobile target. The geometry of the anchor
nodes constrains the accuracy of the locating. In complex
environments such as ships or factory floors, obstacles in
the line of sight between target and anchors decrease the
precision significantly. This is caused by the influence of
multipathing effects and shadowing on distance measure-
ments. In this work, we propose a heuristic approach to
find reasonable geometries for anchor nodes in complex
environments. We achieve this by simulation of anchor ge-
ometries and the employment of evolutionary algorithms
to search for optimizations.

1 Introduction
1.1 Motivation

Our long term goal is to realize a distributed Wireless
Sensor Network (WSN) consisting of self locating mobile
sensor nodes and fixed position anchor nodes used for spa-
tial reference in hazardous environments [2].

In this work, the problem of optimal placement of ref-
erence anchors for communication and localization with
lateration in heavily obstructed areas (e.g. on ships or on
the shop floor) is explored. Since most lateration-based
localization systems require line of sight (LOS) for range
measurements, careful planning of anchor positions is re-
quired in complex environments with obstacles to avoid
potential none line of sight (NLOS) connections.

Current real-world deployment of anchor nodes for
WSNs is still heavily dependent on expert knowledge and
trial-and-error to determine good anchor locations. The
goal of this work is to develop an automated optimization
software for a priori planning of anchor locations for a
given complex environment, such as a ship or a factory.

1.2 Related work
In a number of previous work on WSN, the techno-

logical challenges of implementing wireless locating em-

ploying lateration [4] and signal distortion caused by ob-
stacles [15] were explored. It was observed that the geo-
metric layout of anchor nodes limits the maximum possi-
ble accuracy of locating. This is a well known property
of lateration-based localization methods as described by
Murphy et al. in 1995 [14]. For the 2D-case, the ana-
lytical proof of uniform perimeter placement of anchors
being the optimal geometry for an obstacle-free environ-
ment has been presented by Ash and Moses in [1]. The
introduction of systematic locating errors caused by non-
optimal placement of anchor nodes and strategies to re-
duce these are object of current research [11]. Other re-
search has been done on heuristic algorithms which em-
ploy DLS (Directed Local Search) strategies to optimize
3D placement of anchors in obstacle free areas in a way to
minimize infrastructure cost while avoiding singularities
and keeping appropriate positioning precision [8].

In general, while placement concepts and algorithms
are well studied in two dimensions (2D), placement of an-
chor nodes in three dimensions has been found to be a
NP-hard problem [7]. Assessment of the quality of a given
3D anchor node geometry can be performed by calculat-
ing the DOP-factor (dilution of precision), a unitless nu-
meric value indicating the ratio of measurement noise to
the estimated position deviation as proposed by Langley
in 1999 [3] which has a very low computational complex-
ity (compare Fig. 2).

The solution space of possible anchor node geometries
for a target area with obstacles is infinite and finding an
optimal solution is NP-Hard. A brute-force search is not
feasible for the large search space. Using human intuition
or expert knowledge to generate a good solution is diffi-
cult at best, and not suitable for larger environments with
dozens or hundreds of anchor nodes. A given solution’s
quality can be assessed easily, though, so we propose a
metaheuristic [5] approach employing evolutionary algo-
rithms to find good and cost-effective solutions for anchor
node placement in complex environments containing ob-
stacles.



2 Hardware, simulation and genetics

2.1 Architecture and hardware basis of target WSN
This work is conducted for a specific wireless sensor

networking system optimized for use as a RTLS (real time
locating system) on ships, but the solution presented in
this work is applicable for any anchor based RTLS depen-
dent on LOS measurements.

The target network’s architecture is modular, consist-
ing of a small number of fixed position sensor nodes (’an-
chors’) and mobile sensor nodes attached to the assets to
be tracked. Each of the mobile nodes calculates its po-
sition from distance measurements to anchor nodes and
transmits its current position, combined with other sen-
sor data, to a central anchor component serving as a gate-
way to existing Ethernet infrastructure. This architecture
is based on the proposals of Schulze and Wullner in 2006
[9].

The hardware of the sensor nodes consists of a custom
built baseboard carrying a 32-bit microcontroller (LPCX-
presso1769) and a commercially available UWB (Ultra-
wideband) radio module 1 used for range measurements
and communication [12].

2.2 Lateration
The unknown position Plat (shown in Fig. 1) can be

determined from the distances r0i to at least four an-
chor nodes with known positions Pi = {xi, yi, zi} where
i ∈ {1, ..., n} where n ≥ 4. From the geometry of the
known anchors and measured distances between them, the
sum of distance squares is calculated using the Pythagoras
theorem.

d2ij = (xi − x1)2 + (yi − y1)2 + (zi − z1)2 (1)

Based on the distances dij between the four known an-
chors {P1, ..., P4} and the position of Plat, a system of
linear equations can be derived in the form of A · x = b
where x contains the position Plat to be determined.
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Figure 1: Geometric dependencies of localization via lat-
eration
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Figure 2: Dilution of precision (DOP) caused by overlaid
measurement noise leading to larger areas of solution
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 ·
1

2

Since the distance measurements are estimations with
inherent measurement noise, this equation system can
only be approximated. In our approach, we use the linear
least squares method, shown in equation 2 to do this [14].

x = (AT ·A)−1 ·AT · b (2)

The solution found in x is relative to the selected refer-
ence anchor P1. To transform x to the global coordinate
system of the reference anchor, it has to be offset by P1

Plat = x + P1 (3)

Two general types of systematic errors are present in
this approach: First, there is the measurement noise σ,
which is assumed to be normally-distributed zero-mean
and inherent to our locating system’s hardware. The sec-
ond type of error is based on the DOP [3] caused by unfa-
vorable anchor node geometries.

The minimization of the DOP-induced error however,
especially when placing multiple anchor nodes in and
around a complex environment, is studied in this work.

2.3 Numerical simulation of maximum possible accu-
racy

As a first evaluation, the mean numerical accuracy of
different anchor geometries is calculated using a simula-
tion engine without considering obstacles. For the 2D-
case, the optimal geometry of anchors for maximized po-



Figure 3: Simulation of RMSE with near real-world an-
chor geometry on a ship. The spheroid shells show sur-
faces of equal RMSE (all lengths in cm)

sition estimation accuracy has been proven to be a uni-
form placement around the perimeter of the WSN by Ash
and Moses in 2008 [1]. The equivalent theoretical optimal
anchor node geometry in three dimensions is placement
on a tetrahedron (or on any regular polyhedron for over-
determined systems) around the area of interest [3].

The simulation is performed across a cuboid grid of nx·
ny ·nz grid points. In or around this grid, a number of fixed
position anchor nodes is placed. For each grid point Plat

a lateration is calculated with zero mean Gaussian noise
σ added to each true spatial distance measurement, with
a standard deviation according to the noise characteristics
of the target hardware used for the sensor network [13].

In Fig. 3, the results of such a simulation based on a σ
of 3 cm are visualized.

Since the simulation approach does not account for ob-
stacles in the target area, a way of selecting and evaluating
anchor node geometries is required which does. In the fol-
lowing sections, a new method is proposed to select and
evaluate anchor geometries based on the 3D topology of
the target area given as triangular mesh.

3 Implementation

3.1 Genetic algorithms
Based on observations on biological evolution, the

principle of gradual improvement by selection, recombi-
nation and mutation of individuals in a population can be
used to find good solutions for high complexity decision
problems. As depicted in figure 4, this approach of genetic
algorithms (GA) is an iterative process.

Each individual in a population is represented by its
genome which defines all its properties, explicit and im-
plicit. Four mechanisms are needed for a basic imple-
mentation: a function calculating the fitness of an indi-
vidual’s genome, a method for selection of individuals as
parents for the next generation, a method to crossover the
genomes of these selected to create the next generation

create population
of genomes

calculate fitness
of each individual

n genera-
tions w/o
improve-

ment?

select parents for
next generation

generate new
population

using crossover

perform mutation

display results

next generation

no

yes

Figure 4: Flowchart of genetic algorithm

and finally a method to perform mutation of the new pop-
ulation’s genomes.

Depending on population size and the cost of fitness
calculation, the computational cost of genetic algorithms
can be high. The calculation of fitness can be a very ex-
pensive operations for complex high dimensional prob-
lems since a single evaluation might include complex sim-
ulations running for hours or even days - for just one in-
dividual. This principle weakness of GA can be mitigated
slightly with simultaneous multiprocessing (SMP) if the
fitness of an individual has no interrelation to other indi-
viduals in a population, thus making the problem embar-
rassingly parallel.

3.2 Genome
For the problem of placing a minimal amount of an-

chor nodes in a way that every spot of a target area has
LOS to enough nodes to enable localization, an individual
solution is defined by its genome consisting of a set with a
cardinality in the range of [u, v] of anchor node positions
P1,P2, . . . ,Pn.

G = {P1,P2, . . . ,Pn}

u ≤ |G| ≤ v

The set of all individuals is defined as the population T .

T = {G1, G2, . . . , Gn}

3.3 Calculation of fitness
The fitness is calculated from a simulated visibility test

in a gridded target area with nx · ny · nz = nxyz grid
points, obstructed by obstacles represented as triangles or
triangular meshes. If a ray cast from a grid point to an



anchor intersects at least one obstacle, that anchor node
is considered not visible from this grid point. With this
simple algorithm, a list of visible anchor points for each
grid point is compiled.

Using this list, the quality of the visible anchor geome-
try for each grid point is estimated by calculating the DOP
metric which is defined as ratio of error of estimated loca-
tion Plat to distance measurement error d

DOP =
∆Plat

∆d
The total position estimation error σ can thus be calculated
from the DOP determined for a geometry of anchors and
the standard deviation of measurement noise σm.

σ = DOP · σm
For classification of each grid point, a tolerance ε needs

to be defined as the desired level of DOP at all grid points.
Given this limit, the grid points are classified into three
classes:

(a) visible - the grid point is surrounded by enough an-
chor nodes with LOS-connections to perform latera-
tion with a DOP value less then a preselected toler-
ance ε

(b) suboptimal - the grid point has enough LOS connec-
tions to perform a lateration, but DOP is greater then
the tolerance ε

(c) invisible - the grid point does not have enough LOS
connections to anchor nodes to perform lateration

Fitness is calculated for each individual genome Gi of
the population T . The parameters of the fitness function
are the amount of invisible grid points ni, the amount of
suboptimal grid points ns and the count of anchor nodes
defined in the genome |Gi|. The parameter fi is the ratio
of invisible grid points to the total amount of grid points,
fs is the ratio of suboptimal grid points to total grid points
and fa is the ratio of employed anchors to maximum al-
lowable anchor count. These parameters are scaled to val-
ues within the range of [0, 1], allowing comparison of rel-
ative ’goodness’ and ’badness’ independent of the actual
model parameters. The parameter fa derived from the
amount of anchors is offset to compensate the set mini-
mum required number of anchors for locating.

fi = 1− ni
nxyz

fs = 1− ns
nxyz

fa =
v − (|Gi| − u)

v − u
The total fitness F is calculated as dot product of the

parameter vector and a weighing vector of constant values
wi, ws and wa serving as tuning parameters of the model.

F (Gi) =

fi
fs
fa

 •
wi

ws

wa



The results of the fitness function are normalized to [0, 1]
for comparability of results independent of model param-
eters such as nxy or v.

F̂ =
F (Gi)

wi + ws + wa

The weight parameters allow to express preference of cer-
tain optimizations.

Additionally, the tolerance ε can be used to set the de-
sired level of DOP across the target area. Over all gener-
ations, the individual with the highest fitness F is kept as
the best known solution until either the end condition is
met, or a fitter solution is found.

3.4 Selection method
During the selection phase, candidate individuals for

recombination are drawn randomly from the popula-
tion with a probability according to the relative fitness.
Early experiments were performed with a simple uniform
roulette selection [10], drawing individual genomes at
random from the entire population weighted by their fit-
ness. The probability ps(Gi) of a genome Gi being se-
lected as a candidate for recombination is

ps(Gi) =
F̂ (Gi)
|T |∑
j=1

F̂ (Gj)

This shows that the probability of an individual genome
being selected is directly proportional to its fitness. This
proved not to be optimal: solutions converged to low local
maxima only (F̂ around 0.7) and ceased to improve over
that plateau. This behavior is caused by the high selec-
tion pressure against weak individuals in the population.
This is problematic since in order to find a better solution,
the current local maximum has to be abandoned and an
area in the search space with reduced fitness has to be tra-
versed on the way to finding a better local or even global
maximum. If the weak are culled to harshly, any individ-
ual leaving the current maximum has a high risk of being
excluded from recombination and thus be eliminated.

Hence, a less elitist method of selection is required to
keep diversity in the population. The method of tourna-
ment selection provides these properties [6, 10]. It is per-
formed by repeatedly drawing an uniformly random sam-
ple of k individuals from the population and selecting the
fittest individual from this subset. Using this scheme, in-
dividuals of high fitness have a high probability of being
selected, but the weakest of the flock still have a chance
of being selected at all.

3.5 Crossover and mutation
In the crossover phase, a new generation of individu-

als is created from the selected individuals of the parent
generation. To allow predictions about the total run time
of the algorithm, the population size is kept constant be-
tween generations. For each individual of the new gen-
eration, two uniformly random distinct parents are drawn



from the pool of potential parents. The genome of the
child is constructed by uniformly randomly drawing half
the genes (list of anchor node positions) of each parents
genome, without replacement.

To avoid converging to the first local optimum found,
each genome is mutated to add innovation to the popula-
tion. Each gene is mutated separately, controlled by the
parameters mutation rate σm and a probability value for
creation and deletion of an anchor node preselected as θm.

At least one and up to three types of mutations are per-
formed per genome:

translation – each anchor node position PI is dis-
placed by a random vector ~∆x with length γ ∈
N(0, σm)

creation – with a probability of θm, a new anchor
node is spawned at a uniformly random position in
the target area

deletion – with a probability of θm, a uniformly
random selected anchor node is removed from the
genome

3.6 Break condition
Independent of the actual model parameters (grid size,

range of anchor nodes count, tournament sizes, weights of
fitness components), the overall fitness over time follows
a pattern of diminishing returns: During the initial gen-
erations, the median fitness of the population converges
to a plateau quickly. Once the plateau is reached, fitter
solution are coming up less frequently and the gain of fit-
ness between two consecutively found best solutions di-
minishes.

Better solutions may still be found, but the mean time
between increases grows. A break condition is needed
to allow the simulation to terminate eventually. Once the
maximum amount of iterations to be performed without
finding a better solution than the currently best known one
is reached, the algorithm terminates and the current best
known solution is proposed as a result.

4 Performance

The examples provided in this work are limited to two
dimensions for clarity. The genetic algorithm is indepen-
dent of the dimensionality of the grid and anchor nodes
as it uses an abstract fitness-metric for it’s decisions. This
metric depends on another algorithm calculating the visi-
bility of anchors for individual grid points which works in
three and two dimensions according to the dimensions of
grid points and anchor positions.

As shown in Fig. 5(d), the GA converges fast during
the first iterations, but over time the improvement rate de-
clines as the the fitness converges towards a maximum
level. This level is the local optimum the GA can reach
with the given parameter set. Improvements over this level
are unlikely and will be small, so the break condition of

20-50 iterations without finding a better solution is advis-
able.

Profiling of a run of the GA shows that the ma-
jor amount of runtime is spent evaluating the fitness of
genomes. This is expected behavior since the other op-
erations selection, crossover and mutation all iterate over
the population once with a computational complexity of
O(n). In order to evaluate the fitness of an individual
genome, however, a computationally expensive visibility
test is performed. The visibility test is basically a ray-
triangle intersection test for 3D-simulations. The compu-
tational cost increases linearly with the grid size nxyz But,
since the amount of grid points in a cuboid grows to the
third power of the lengths of the cubes sides, so does the
computational cost.

Let m be the number of obstacles, n be the number of
anchor nodes and n1, n2, n3 be the number of grid steps
per dimension. This gives a computational complexity of

O(n1 · n2 · n3 ·m · n)

for a single visibility test. Since there are generally a lot
more target grid points then there are anchor nodes, the
influence of the amount of anchor nodes is insignificant
for large ni.

Since the visibility tests are performed once for each
member of the population per iteration, the total complex-
ity for one iteration of a population of size s = |T | is

lim
n,m,s→∞

O(n3 ·m · s) = O(n3)

In Fig. 6, a solution generated by the proposed algo-
rithm is presented. The target areas have complete cover-
age and little to no areas of diluted precision. The amount
of anchor nodes employed is below the maximum v. Con-
vergence of fitness to a local optimum was observed in
all simulation runs, independent of the model parameters
(see Fig. 5(d). The maximum level of fitness reachable
with a given set of model parameters is less predictable.
As long as the diversity of the population is kept large and
deviation from the last found local optimum does not lead
to assured elimination from the gene pool, a better solu-
tions may be found eventually. Since there it is not known
if the currently known best solution is a global or a local
optimum (except if a individual reaches a fitness score of
1), the time available for simulation is the main constraint.

5 Conclusion
In this work, a heuristic approach was proposed to find

solutions for anchor node placement in complex environ-
ments containing obstacles. A genetic algorithm capable
of finding good solutions was presented based on a fit-
ness function optimized for anchor placement in complex
environments. It was also shown that the quality of solu-
tions found by the GA depends on the parameter set for
the modeled simulation.

The effect of co-evolution can be observed when per-
forming multiple optimization runs with the same set of
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Figure 5: Example snapshots of a 2D solution showing the convergence of the genetic optimization over several genera-
tions. Red spots are non-locatable, yellow spots are locatable but with diluted precision and green spots are locatable with
high precision.

Figure 6: Optimized anchor node positions: 13 anchors
cover work deck of a buoy tender with DOP < 6, locat-
ing error σ < 6 · σm. Red hollow circles denote positions
locating is not possible

obstacles and parameters. The ’double anchors’ visible
in Fig. 5(c) at the intersection points between the obstacle
lines can be found in almost all solutions generated from
the parameter set.

This effect hints at the possibility of stable design rules
for good solutions which can be used as ”‘best practice”’
without individual simulations to improve the proposed
algorithm in the future. For a real-world implementation,
some additional design rules must be implemented in the
algorithm, such as constraining the anchor positions to
feasible locations where they can actually by mounted on
the existing infrastructure and more precise specification
of the required precision per area covered.
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