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Abstract—One of the applications of Ultra-wideband pulses
are in the area of indoor localization systems whereas the anchor
nodes are placed at stationary positions on the ceiling or walls,
while the mobile nodes can be located at any given location
inside the building. The localization system has to estimate
the location of the mobile nodes, but when the anchor nodes
and the mobile nodes are separated by a solid material, such
as a wall, wood, partition and glass, the performance of a
localization system deteriorate due to distortion of UWB pulses
as it penetrates the material. The quality of distortion is mainly
affected by the type of material, thickness and the pulses’ angle
of incidence. In this paper, we analyse features which strongly
characterizes the distorted pulses and with help of machine
learning techniques, we present a framework for estimating the
material type, material thickness and pulse’s angle of incidence
from a received distorted pulse. First, the material which distort
the UWB pulse is classified, second the material thickness is
assigned to four given classes of thickness and finally the pulse’s
angle of incidence is estimated.

I. INTRODUCTION

Ultra-Wideband(UWB) pulse technology has been applied
in different fields of research and industry [1]. In most indoor
applications, the technology provides a promising future for
improving performance of real-time locating systems (RTLS)
due to its ability of retaining the robustness of the signal
under harsh environments such as in non-line-of-sight (NLOS)
situations [2].

Nowadays, many indoor RTLS are equipped with UWB
technology but there are still potential challenges which limit
the performance of these systems. Some of these challenges
include poor estimation of the location due to ranging errors
which are caused by the penetration of walls, for instance
in office buildings or hospitals. Such an indoor localization
scenario is illustrated in Figure 1. In [3] and [4] the authors
discussed the distortion of UWB pulses and the challenge
of pulse detection for receiver algorithms. The NLOS effect
penetration of wall might cause a huge bias which could
be mitigated with the knowledge of the specific parameters
of the penetrated wall, where the main parameters are the
type of material (inherently permittivity and permeability), the
thickness of the wall and the angle of incidence of the UWB
pulse. If this information of the pulse path is known, the actual
measured pulse travel time (ToF, time-of-flight) can be revised
which results at least in an increased localization accuracy.

Regarding the scenario as shown in Figure 1, to range
between a mobile target and e. g. anchor b means to pass
a 10 cm wall of partition, which causes a bias of coarsely
additional 10 cm each (assuming ToF ranging) which results
in a significant localization error depending on the accuracy
of the other rangings. By using standard multilateraton as
described in [5], fact is the more accurate the input range
values are, the more precisely the output localization solution
is. If the bias of the measured ToF respectively ranges would
be known, as addressed in this work, the localization accuracy
could be significantly improved.

Fig. 1: Exemplary and schematic view on an indoor local-
ization scenario e. g. in an office environment. The range
measurements undergo penetration effects due to the walls
within the buildung.

Due to the standardization process in building construction,
there are typically a few different material types for walls. In
addition, the bricks for walls have a few different standard
thicknesses, varying from country to country. This results in
standardized walls and the proposed approach is to classify this
walls with a cascaded classification process. The parameters
of the penetrated wall are derived from the characteristical
distortion of the UWB pulse.

A. Motivation

The aim of the paper is to present an approach for classi-
fying UWB pulses distorted by penetration effects. The main
goal is to analyse features of a distorted UWB pulse, as well
as to propose a framework that we use to estimate the angle of
incidence and material thickness. However, compared to other
approaches for estimating angle of incidence and material
thickness which requires a theoretical model of the channel
transmission or a full waveform of a received signal, our
approach is mainly based on the analysis and characterization
of the individual distorted UWB pulse.978-1-4799-8923-2/15/$31.00 c©2015 IEEE



B. Related work

Most localization algorithms are not robust in NLOS situa-
tions due to the increase in ranging errors. In NLOS situations,
IR-UWB waveform undergoes distortion which resulted in
poor estimation of location (i. e. when using ToF based ranging
algorithms), because the ranging error is influenced by the
distortion of the UWB pulse [6]. Therefore, techniques that
can reduce ranging errors due to NLOS are called for. In
the literature, this problem is divided into two sub problems:
the first sub-problem is the identification of NLOS situations
and the other sub-problem is the mitigation of the bias that
is introduced due to NLOS [7]. In this paper we will focus
on the latter sub-problem. Schroeder et al. presented in [8] a
technique for NLOS identification and an improved detection
technique of a distorted UWB pulse is covered in [3]. Now,
the characterization of a distorted UWB pulse is required in
order to improve the estimation of angle of incidence, material
and wall thickness.

This paper consists of four sections. First section deduce our
motivation and introduce the problem that we are addressing.
The solution to the problem is presented in Section II, and the
experimental set-up, evaluation and discussion of the results
can be found in Section III. Section IV concludes the major
outcome of this paper.

II. SOLUTION

In this section we present the basics of our approach: First,
the estimation of the penetrated material, thickness and angle
of incidence: The algorithm framework and the features that
are utilized by a machine learning algorithm (i. e. we use a
single layer artificial neural network) for classification. And
the second step is the mitigation of the error influenced ToF
values.

A. Classification framework

The framework consist of a five stage process as shown in
Figure 2, and each stage can be described as follows:

1. Distorted pulse
In the first stage, an UWB pulse distorted by penetration
effects is detected and sampled (e. g. with leading edge
detection as detailed by Haneda et al. in [9], Kuhn et al.
in [10] or in [4]).

2. Feature extraction
In the second stage, eight features of the detected dis-
torted UWB pulse are extracted. These features include
mean energy µx, amplitude ratio γAMP, kurtosis κx, mean
excess delay τMED, rms delay spread τRMS, area ratio γAR,
symmetry ratio γSYM and skewness λx.

3. Material classification
In the third stage, the material which distort the UWB
pulse is classified using a machine learning (ML) al-
gorithm. The input are the extracted features of stage
two which have been used to train the ML algorithm
to recognize the patterns of the UWB pulses that are
distorted by a specific material. In practice after the

training phase we would obtain
(
N
2

)
decision boundaries,

whereby N is the total number of material types.
4. Thickness classification

In the fourth stage, penetrated material thickness classi-
fication is performed by training a second ML algorithm
to recognize the patterns of the UWB pulses which are
distorted by a standard known thickness of a particular
material. Hence, after the training phase we would have(
M
2

)
decision boundaries, in which M is the total number

of chosen thicknesses that are considered.
5. Angle prediction

In the fifth and last stage, the prediction of the angle
of incidence is performed. We observed in the analysed
features that the RMS delay spread of a UWB pulse is
proportional to the angle of incidence in various distortion
conditions and differs for each material. An example
of this relationship is illustrated in Figure 3. Hence,
measuring the RMS delay spread, the angle of incidence
can be predicted.

TABLE I
FEATURES WHICH ARE EXTRACTED FROM EACH DISTORTED PULSE.

No. Features Mathematical Formulation

1 Mean energy µx =
1

N

N∑
n=0

x[n]

2 Kurtosis κx =
1

N

N∑
n=0

(
x[n]− µx

σx

)4

3 Mean excess delay τMED =

N∑
n=0

x[n]

(
|x[n]|2 − µx

xT x

)

4 RMS delay spread τRMS =

N∑
n=0

(x[n]− τMED)2
(
|x[n]|2

xT x

)
5 Amplitude ratio γAMP =

|max(x)|
|min(x)|

6 Area ratio γAR =

K∑
k=0

x+[k]

M∑
m=0

x−[m]

7 Symmetry ratio γSYM =

τmax∑
n=0

x[n]2

N∑
n=τmax+1

x[n]2

8 Skewness λx =
1

N

N∑
n=0

(
x[n]− µx

σx

)3

The features which are extracted in step two and their
respective mathematical formulation in discrete notation are
detailed in Table IV, whereas x denotes a column vector which
contains samples of a distorted UWB pulse, x− and x+ denotes
the negative and positive samples of x respectively, τmax is
the index of a sample which has maximum value in x and σx
denotes the standard deviation of x.

While the features 1 to 4 were taken from Marano et al.
in [11], where they were used to perform a general LOS/NLOS



Fig. 2: Proposed framework which is used to perform classification of penetrated material, wall thickness and prediction of
angle of incidence.

distinction, the feature 5 to 8 were developed by the authors
to address especially the distorted shape of the pulse and his
sidelobes.

B. Bias mitigation

Bias mitigation is the last step before localization estima-
tion. Due to the lower velocity of signal propagation inside
the wall, there is a bias in ToF. With the determined wall
parameters from Section II-A the penetrated path through the
wall dpen.path is calculated as follows:

dpen.path = dwall ·
1√

1 − sin2
(

θ
εr·µr

) (1)

Where dwall is the thickness of the wall, θ the angle of
incidence, εr the permittivity and µr the permeability the
classified material of the wall. The measured ToF τToF is
now mitigated by the bias component τbias:

τtrue = τToF − τbias

= τToF − dpen.path

c0

(
1√
εr·µr

− 1
) (2)

This results in the mitigated ToF τtrue which is multiplied
by the speed of light c01 equivalent to the bias-compensated
spatial distance r between two radio transceivers:

r = τtrue · c0 (3)

1We assume that the difference of speed of light between vacuum and air
do not affect our results.

III. EXPERIMENTS AND PERFORMANCE

Simulations are carried out to evaluate the proposed frame-
work based on synthetic distorted pulses which are gener-
ated according to the channel transmission model which was
presented by Jing et al. in [12]. Three classes of materials
(partition, drywall, brick) were used and the parameters for
angle of incidence have been varied between 0◦ and 85◦

whereas the thickness of the material was fixed to four specific
thicknesses (11.5 cm, 23 cm, 17.5 cm, 35 cm). Furthermore,
8 features which are described in Section II are extracted from
each distorted UWB pulse and trained by an artificial neural
network using MATLAB’s Neural Network Toolbox.

Common classification using a supervised ML algorithm
involve three steps which are training, cross validation and
testing. In the training step the model which describes the
data set is learned, the cross validation is aimed to choose
the better learned model, and the testing step is to evaluate
the performance of the learned model. Note that the default
settings of the neural network from this toolbox have been
employed for all simulations which randomly splits 70 %
of the original data set into training data, 15 % for cross-
validation and 15 % for testing.

First, we create a database of synthetically distorted UWB
pulses which comprises two types of data sets: The first data
set (type I) is generated by varying the angle of incidence
from 0◦ to 85◦ in steps of 0.5◦, while the second data set
(type II) is generated by varying the angle of incidence from
0◦ to 85◦ with step of 1.48◦. The type II data set is used to do
an additional performance evaluation of the ’optimal’ neural
network model which is obtained based on type I data set.

The generation of both datasets is done for each material and
thickness meaning that the database contains a total number
of 2748 distorted UWB pulses, out of which 2052 of distorted
UWB pulses belongs to type I data set and 696 of the distorted
UWB pulse belongs to type II dataset. A single layer artificial



neural network (ANN) architecture which has a total number
of 18 neurons is used (quantity of neurons based on empirical
experience).

Second, the classification of material and thickness is per-
formed. The prediction of angle of incidence is done as
described in Section II. Technically speaking, the type I data
set were plugged into the ANN and since the material type,
thickness and angle of incidence which distorted the UWB
pulse is known, these are labelled data and the task of ANN
is to learn the hidden models (of specific material type, and
thickness) which distort the pulses. The type I data set is
then split into training set, cross validation set and testing set
according to the default settings of MATLAB.

The performance of ANN classification based on type I
data set can either be measured using a confusion matrix, the
receiver operating characteristics (ROC), or the behaviour of
the cross entropy. We use the behaviour of cross entropy to
describe the performance of ANN classifiers, because of the
resulting verifiable quality parameters. In brief, cross entropy
is the error function that is minimized by the algorithm which
is used to train a neural network. Theoretical and experimental
comparison between cross entropy and sum of square error in
ANN related algorithms can be found in [13] where the authors
found out that, training with cross entropy function, minimizes
classification errors. Figure 4 and 5 show the plots of cross
entropy in both classification of material and classification of
thickness respectively using type I data set. The cross entropy
in both cases is decreasing and has low values, which indicates
a reliable classification result. In extreme cases when cross
entropy is zero, that means there is no error in classification.

Fig. 3: The plots shows the relationship between root mean
square delay spread τRMS and angle of incidence θ. This rela-
tionship is useful in the prediction of the angle of incidence.

The real performance of the framework is evaluated at
each stage separately using the type II data set. However, we
are interested in the performance of learned neural network
models on this data set, where we measure (percent correct)
how well the ANN would be in recognizing material type and
thickness which is shown in Table II and Table III. The results
indicates the performance in all classification task is above
90%, and the UWB pulses which are distorted by a brick wall
can be easily identified compared to other materials.

Fig. 4: The performance of trained neural network with first
type data set which is used to classify penetrated material.

Fig. 5: The performance of trained neural network with first
type data set which is used to classify penetrated material
thickness.

The performance of angle prediction is presented in Figure 6
by the plots of the squares of the prediction error as a function
of angle. However, the causes of included outlier are not yet



discussed in this paper and subject of further work. The pulse
index is in context the serial number of the pulses in data set
type II.

TABLE II
PERFORMANCE OF NN IN CLASSIFICATION OF MATERIAL

Material type Performance on type II data set (%)
Partition 94.40
Dry Wall 98.71

Brick 99.14

TABLE III
PERFORMANCE OF NN IN CLASSIFICATION OF THICKNESS

Thickness (cm) Performance on type II data set(%)
11.5 98.28
17.5 92.57
23.0 96.55
35.0 98.85

Regarding the problem as addressed in Section I, that means
that in over 90 % for every penetration case the parameters,
which are crucial for the size of the bias due to through-wall
propagation, can be classified correctly. With these parameters
and the equations from Section II-B the mitigated time-of-
flight and thereby the more accurate spatial distance could
be determined. However, the fifth stage of our framework,
the angle prediction, has an inherent risk of bigger prediction
errors due to the dependence on only one feature. If this
feature has a lower grade, i. e. in real world environments,
the accuracy of the predicted angles of incidence would be
decreased. So, in Table IV are presented some exemplifying
good- and bad-case scenarios for the following penetration
case: brick (εr ≈ 4.43, µr ≈ 1), dwall = 23.0 cm and
θtrue = 10◦ (Equations cp. Section II-B; assumption is that
classification of material type and wall thickness was correct).

TABLE IV
ERROR ANALYSIS FOR WEAK PERFORMANCE IN ANGLE PREDICTION

∆θ/
◦ θpred/

◦ dpen.path/cm rbias/cm ∆r/cm
0 10 23.0 25.4 0.0

10 20 23.1 25.5 -0.1
30 40 23.3 25.7 -0.3
70 80 24.2 26.7 -1.3

∆θ is the error of the predicted angle θpred and ∆r is the
remaining error after the bias mitigation with error afflicted
angle predictions. So, for this scenario there is only a small
error due to a weak performance in the stage angle prediction.
In column rbias is listed the overall bias of the range, calcu-
lated with the wall parameters which were determined by the
framework. This bias is mitigated in Equation 2.

IV. CONCLUSION

The aim of this work was to analyse features which retains
more information of distorted UWB pulses and to present an
approach which could be useful in prediction of angle of inci-
dence, material type and wall thickness as amongst the crucial

Fig. 6: Comparison between the estimated angle of incidence
and its true value, also on the lower panel is the square
prediction error which show in most cases the prediction error
is lower but higher where prediction fails.

parameters of RTLS in localization of the mobile nodes. Our
results show that the analysed features and the approach which
is used, can guarantee significant performance. The experiment
shows that for every parameter combination a hit rate of over
90 % is achieved.

However, in this paper the data resource is completely
synthetic because of the huge spectrum of wall parameters and
measurement scenarios. So, to verify the shown results with
real world data an extensive measurement campaign is neces-
sary. Until then an improvement of the current experiment is
to use synthetic data, which is combined with a standardized
channel model for UWB propagation in indoor environments
to get more realistic waveforms. A further point is the analysis
of the computational cost of the proposed approach, which is
necessary to know for productive use.
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